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In this paper, we obtain the generalization of the BBGKY hierarchy for a 
binary mixture of chemically neutral particles. Using modified boundary 
conditions different from the ones proposed by Bogoliubov, we solve the 
hierarchy, and obtain explicitly the set of two-particle distribution functions 
for the several species of the mixtttre, up to first order in the density. 
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1. I N T R O D U C T I O N  

In  ear l ier  papers ,  (I-~/ the kinetic  theory  o f  a dense one -componen t  gas was 
deve loped  using a me thod  which differs essential ly f rom the one advanced  
by  Bogol iubov  in tha t  the  b o u n d a r y  condi t ions  are no t  the same. In  fact,  
the new b o u n d a r y  condi t ions  take  into  account  explici t ly the effects o f  the 
m e d i u m  c o m p o s e d  by  the remain ing  part icles  of  the gas, and  in this way  
using this new approach ,  one obta ins  divergenceless expressions for  the 
t r anspor t  coefficients to all orders  in the density. 
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In this paper, we generalize the work presented in Ref. 2 to the case of 
a binary mixture. This has been done for several reasons. First of all, to 
obtain expressions for the transport coefficients of such systems without 
any reference to a density expansion. Results of this nature are, to our 
knowledge, not available in the literature. Second, to give a basis from first 
principles to the work which has been done recently for the specific case of 
a binary mixture of hard spheres. (~) The third reason is of practical 
importance, namely the fact that very accurate experimental results reported 
for the binary diffusion of a dense gas at high pressures are in open contra- 
diction with the theoretical predictions of Thorne's theory. (5) Although it 
is now known that in the particular case of the diffusion coefficients Thorne's 
theory is incomplete, (6) the diffusion force being corrected by an additional 
term arising from the point between the two spheres where the correlation 
functions are to be evaluated, (7) we hope that our calculation will yield a 
systematic method which will clearly exhibit many of the obscure points 
which are present in the available methods dealing with this subject. Also, 
we expect to account for the difference between theory and experiment in 
the case of the hard-sphere system. 

In Section 2, we sketch a derivation of the BBGKY hierarchy for a 
binary mixture. In Section 3, we obtain a solution of this hierarchy making 
a density expansion of the relevant quantities and using the new boundary 
conditions. We explicitly write down the two-body distribution functions 
up to first order in the density. Finally, Section 4 is devoted to a brief 
discussion of the results. 

2. T H E  BBGKY H I E R A R C H Y  FOR A B I N A R Y  M I X T U R E  

Let us consider a two-component gas consisting of particles of mass 
rn~ and rnb which do not react chemically. We assume that there are ?Ca and 
Nb particles of each species, and that they are enclosed in a volume V. 
The Hamiltonian of the system will be taken in the form 

H :  ~ S-' P '~4 -  1 
~--1 2 r n 7 -  2 ~ ~ }~ ~ %~(1 q~i -- q~  l) 

= B=l a~l k=l i=i 
( c d r  k ) 

(1) 

Here, 7, = 1 corresponds to the species labeled by a and 7 = 2 to the 
species labeled by b; p,~ and q,~ denote the momentum and position of the 
ith particle of species 7. We will label the particles with two indices: the first 
one, with a greek letter, will denote the species, and the second one, with a 
latin letter, will denote the number of the particle of the corresponding species. 

The potential energy is assumed to be pairwise additive, with the 
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potential between the particles ~i and fik given by ~0~(! q ~ -  q~k 1). The 
potentials that we will consider are strongly repulsive ones. 

The Liouville equation of our system is 

( ~ F / ~ t ) -  [H, F] = o (2) 

with the Poisson bracket given by 

[H, 1 :  Z 0q~i 0p~7- ~p--~-" eq~ i c~=l i=1 

Here, F is the distribution function in the phase space of our system. 
Substituting Eq. (1) into (2) one finds that 

+ - E E r = 0  
~=1 i=1 k=l m~ Oq~i (4) 

We now define the reduced distribution functions of the sets of s~, and 
s0 particles 

F{s~}{% } ~- ( 1 / V  sa+sb) f Fd{N~ - -  sa} d{No -- so} (5) 

Here the integrations are performed over the phases x of the remaining 
particles, N.  -- s. and No -- so �9 Applying the operator 

V -{~~176 f d{N~ -- sa} d{No -- so} 

on both sides of Eq. (4) and using the definition (5), one finds that 

60F{%} (% } 2 s~ 
c9 t + Z 2 P . i .  ~ c~=1 i=1 t n ~  8qai Fis~}{sb} 

t ~ SO s b s a 

/i=l k=l ~qai OPal @ E E i = l  ~=I Oqoi OPoi 

Sb s a 

i:1 k=l ~q0i ~Pbi 

@ ~ ~ ~qai ~P~i i:1 k=l 
if{s,,} {sb} 

V i~__ 1'= dx~, ~+1 ~q~i ~p,~. F{s~+l} {sb} 
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~b 

V ~=~.= dx~,~+~ ~q~i ~p~ FI~}(~+~} 

N. -- s~ ~z dx. Sa+l 

"Ca f ~lgab(I q~i - -  qb,s~,+l l) 
N b  - -  3b ~1 dxb,.,~+l - -  = 0 

V .= ~qal  ~Pai  F(saHsb+l} 
(6) 

Taking the so-called thermodynamic limit N~ --~ co, V ~ co, N~/ V = n~ , 
(a : 1, 2), one can write Eq. (6) in the form 

2 2 sa 

at /3=1 a = l  i = l  

where 

• O~(x~i, xs,s~+O F(~,-~+2/{~b+~-l} (7) 

~=1 i=1 m~ ~q~i 

2 2 gB ~3--B 

- Z E Y E  
a = l  B=I i=l k=l 

O~(x.~, x~) (8) 

and 

O~(x~i, xBj) --~ D%o(I q~i --  qBJ I) ~ ~B( I  q~i -- qsJ 1) 
~q~i ~P~i + ~qBJ " ~PB~ 

(9) 
Equation (7) is the generalization of the BBGKY hierarchy for binary 

mixtures. 

3. F O R M A L  S O L U T I O N  OF T H E  BBGKY H I E R A R C H Y  

In this section, we will proceed to solve the BBGKY hierarchy for the 
binary mixture. 

The hierarchy equations corresponding to the one-body distribution 
functions are given by [see Eq. (7)] 

~t m~ " ~qa l  - -  Ha -- d x a 2  0 l l ( X a l  , Xa2) F{2}{o}(Xal , Xa2) 

f dx~l O~(x~ ,  xbO Fa}a}(x~l, xb0 + HO 

(lO) 
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~F{o){1}(Xbl) Pa aF{o}a/(xa) f dxolO=(Xol, x~O Fam~(xo~, x~O ~t T rn~ ~ q a  = n~, 
] 

+ n~ f dxb2022(xa, xo~)F(o}{2I(xbl, X~2) 

(11) 

These two equations can be written compactly as 

m~, " aq~ 1 ) F{e-v}{~-lI(x~l) 

2 

= E n~ f dx~.e{~,, ) O,~(x,1, x~.e(~.,)) F{a-~,-~a{,,+~,_2}(x,a, x~.e(~.y)), 
a:=l 

y =  1,2 (12) 

where the index ~(~, y) is given by 

~:(c~, y) = (c~ -- 2)(2y -- 3) + y, cr y = 1, 2 (13) 

We will assume, as usual, that the distribution functions of more than 
one particle are time-independent functionals of  single-particle distribution 
functions, namely, of Fh}{o} and F{0} h} �9 Thus, we may write that 

F{sa}{sb}("" "~ t) --+ ttT{,a}{s~}("" I -F{1}{o} , ]7{o}{1}) (14) 

where the usual notation is used. Substituting Eq. (14) into Eq. (12), we find 
that the kinetic equations have the form 

aF{=_,}{,_~I(x,0 = A{2_,}{,_~}(x,~ IF(~}{o),F{o}{1}), y = 1, 2 (15) 
0t 

Let us now expand both functionals A{~_,}{,_~} and F{Q{%} in powers of 
the density: 

2 
(o)  - -  (1) A{e-~}{~-x} A{2-~I{~-z} + ~] = Y/~A {2-~,}, {~,-1}, a 

a = l  

2 2 

-5 } 2 E "~ y'{2-.I{~-,}..B + "" (16) 
e = l  B=I 

2 
L-- (o) _ ~(a) 

F{~.){sd - r{soI{sd + ~ ,,~rl,~}{~b},~ 

2 2 

n~n~Fi~d%}.~ ~ + ". (17) 
a = l  B=I 
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F o l l o w i n g  the  u sua l  p r o c e d u r e ,  we f ind t h a t  

(o) x A{~_~}{~_~}( ~i . . .)  = _  P~I.  ~ Ft~_,}{~_l}(x,~) 
m~ OqT~ 

08) 

A(D : x  {2-y}{~-l},~ v l  Xa,~(yw)) I o 

(o) x X F{4_~_~}{~+~_2}( ~1, x~,d~,~) (19) 

{2-v}{v-1}, ~"..__...~ , , 
/indices 

�9 -(z-D x • /;{a-~-.}fy+.-2}( ~1, x~,d.,~)) (20) 

W r i t i n g  

~s F{o}{1}) 
~t 

~,, 3F{sa} {sv} ~F{2-?} Iv-l} 

~=i 3F{2-~}{v-1} 3t 

v=l  3F{2-~}{~-1} A{2-v}{~ 1} 

: s  ur{%}(%} ,~ (o) 

. ~ (o) 
~_ nc~ [. Os . ( 1 )  �9 

~=t (~F{2-'A{v-1} zJ{2-~}(v-1~'~ 

~ r,(1) 
@ ~ ~(o) ] } 

3F{2_,}(~-1} A { 2 _ ~ }  {~--1}] -1- " ' "  
(21) 

a n d  def in ing  the  o p e r a t o r s  D ") as 

D(t) 3~  . ( / )  , 

/ i n d i c e s  / i n d i c e s  

(22) 

one  f inds  the  f o l l o w i n g  di f ferent ia l  e q u a t i o n s :  

(a) T o  z e r o t h  o r d e r  in the  dens i ty  

2 
D (o) F(o) ~.-, ~-(o) (23) 
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(b) To first order in the density 

,) 

D (o} F(a) o-~ ~(x) 
2 {2--'/}{Y I} {sa}{,~b},(x --F ~(8a}{Sb}l'{SaI{Sb},C~ 
"/=I 

2 
(1) lc,~ (0) 

- -  - -  D - -  Z {2 --"/} {~'--1}, ccf{  8 a} { sb} 

2 sB 

+ Z Z f dx .... .... (o} , Fisa-a+2} {sa+a--l} 
B=I i=1 

.t.(1) , q~{~,}{~,.~ (24) 

For the other orders in the density, one can find analogous equations. 
The formal solution to Eq. (13) is obtained in the same way as was 

done for a one-component gas. (2~ The result is given by 

F(O) r 

,c,-~" 17(o) ,, r -r 
= o ( ~ } ~ s ~ I r { ~ } { s ~ t ' " l S r  S ( o } a ~ F ( o m } )  (25) 

The solution to Eq. (24) is 

(1) F{~}{~o},~( "" i f~zI{0}, F{o}{1}) 

o{s~} (sb}r{ ~} (sb},~U'" I S{1) (oIF(1} {o} 

yo" + dr '  ~-*" .L(1) o{s~} {s b} T{s~} {sb}, 

, S~o} a}F~o~ a ) )  

(26) 

Here we have introduced the streaming operator 

As was done in Refs. 1 and 2 we shall introduce the following boundary 
conditions: 

! i_..m O (s~} {%} r { Sa} { Sb} C . . i S {1} (o} F{1} {o} , S~o~t,}F(o}(~} ) 

s a Sb 

(1 _(o) .~ --~ 

i = 1  k = l  

• S~o}(1}(xbk) F{o}(1}(Xbk) (27a) 
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o-~- v(O ~ lira ~,~o~{4~{~o~{~, ~. .~  (..- 1 S{~{0~F{l~{0~, S{0~a~F~0~{l~) 
~ i n d i e e s  

S a 8 b 
(~) �9 __~- 

= g{,o~{~. ~. .=  hm S{ 4 {4  1-[ I-[ 
Z i n d i c e s  i=1 ~=1 

• S~l}{o}(X~i) F{1}{o}(Xai) S~*o}{1}(xb~) F(o}{1}(xb~) (27b) 

Here g{Q%} is the equilibrium (s~ + &)-body correlation function, 
which is expressed as the following density expansion: 

2 
~(0) ~(a) 

2 2 
~(2) + �89 2 ~ n~no ~{.#1~},~ -F "'" (28) 

a=1 13=1 

The boundary conditions given by Eqs. (27a) and (27b) are a generali- 
zation to binary mixtures of the boundary conditions discussed in Refs. 1 
and 2 for a one-component gas. It should be mentioned that our boundary 
conditions take into account the statistical effects of the medium. 

Substitution of Eqs. (27a) and (27b) into Eqs. (25) and (26) and a 
straightforward calculation leads to the result that 

F{(O) ,,}{~}~,"" I Fh/{0} , F{o}{1}) 
�9 q~ 8 b 

= r{4{4~4{~o~ I-[ [ [  F{~{o~(Xo3 F~o~l~(x~) (29) 

F(1)^ ~ -  5} ~(X,yl ~ 
2 

i=1 

fo f --'r X -+- dz S{4_2v}{2./_2} ( .vl, x ,2)  dx~,/c(~,v)+l {--/w{4-2v}{2v-g}(x~,1 , x-f2) 

• 50{5 . . . .  }{~+,,-e}(x~.,~, x~,~(~,.,,)+l) 

@ [ O , a ( X , 1 ,  Xa./c(cx,,)+l) + O , o ~ ( X , 2 ,  X~,/c(a.v)+l)] 

• .F{6_~_2,}{,+~,,_3)(x,,~, x~r x~,.~+z) 

X F{2 _.,,, } {,,.,,-1} (x,1)/7{2-.,.,.} {.v-l} (x,2) F{2-cd {~x-1} (x0:./C+l) (30) 
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F{(1) . 1}{1},a[Xal , Xbl ] F{l}{O} , F{o}{a}) 

(1) t".. = g~} ~},a-,~i, xoi) ~a}~i}(xo~, x~O t% ~o~(XoO F~o~}(xo~) 

J? f + d~- S(-d~l}(x~l, x~O dx~ {--F~l}~l}(x.1, xbi) 

• S%a~(Xal, x~2)[Oo~(xa~, x~2) l'~_~}~_~(x.~, x~) 
• ~,-~}~-1}(xo1, x~) + Oo~(x~, x~) 
x/'~_~}~}(x~, x~0 ~r x~)] 
+ [G~(x~, x~) + GdX~l, x~)] 
• I'~_~}~(X.l, X~l, x~) 5G_~}~}(xo~, x~i, x~)} 
• Fa}{o}(x.1) F{o}a}(x~0 F{~_~}{~_I}(x~) (31) 

In these expressions we have used: 

_Co) (32) F{s~I(s~} ~ 1 --  g{so}{so} , 

s a S b 

~{Sa}{Sb} ~ !l~m S{s-a'r}{sb} H S{1}{o}(Xai) H S{o}{1}(Xbk) ( 3 2 )  
i=1 /c=l 

k(% ~,) ---- 4~y -- 6y -- 6o~ q- 10 (34) 

If  we now substitute Eqs. (29)-(31) into Eqs. ( l la)  and (l lb) ,  we can 
obtain the explicit kinetic equations for the binary mixture up to first order 
in the density. 

4. C O N C L U S I O N S  

In this paper, we have obtained the kinetic equations for a binary 
mixture using the new boundary conditions expressed by Eqs. (27a) and (27b). 
In these boundary conditions, we take into account explicitly the effect of 
the medium. We will use this innovation in order to compute transport 
coefficients, which will be reported in a subsequent paper. 

When our kinetic equations are applied to a binary mixture of hard 
spheres, neglecting the effect of triple collisions, one obtains a set of equations 
which are identical to the first order in the density terms of the equations 
recently derived by Robles-Dominguez and Pifia. (8) These equations are 
the generalization to binary mixtures of Enskog's kinetic equation. 
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